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ABSTRACT 

A nonlinear system derived from Lorenz system was presented recently by Tee 

and Salleh (2013a). Although some basics dynamics were presented, the Hopf 

bifurcation analysis for the system has not been illustrated yet. Thus, the Hopf 

bifurcation of the system was determined and the directions of the Hopf 

bifurcation were demonstrated. We discovered the dynamics on centre manifold of 

the system and the direction of the Hopf bifurcation in more general cases which 

supports our finding in Tee and Salleh (2013b). The system shows complexity 

within the system and is worth to be further researched in the future. 
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1. Introduction 

In Tee and Salleh (2013a), a nonlinear dynamical system modified from 

Lorenz system was introduced as follows 

 

{
𝑥̇ = 𝑎(𝑏𝑦 − 𝑥);
𝑦̇ = −𝑥𝑧 + 𝑐𝑥;
𝑧̇ = 𝑥𝑦 − 𝑏𝑧;

                                      (1) 
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where x, y, and z are variables and a, b, and c are real parameters.  

 

System (1) has a lot of dynamical properties that are yet to be discovered 

in this particular unique modified system from the original Lorenz system, 

see Lorenz (1963), Sparrow (1982). The system was newly discovered and 

caught our interest due to the uniqueness exerted by the system. The sudden 

changed of the dynamical system flow of trajectories motivate us to further 

research the system into finding the behaviour of the system through 

bifurcations. Hence, an extensive research was conducted with the intention 

of finding the foundation of the individuality by means of bifurcations.  

 

Zhou (2008) did a research based on a new chaotic system modified 

from Lorenz system which was later named Zhou system. In his paper, he has 

studied some basic dynamical properties, such as Lyapunov exponents, 

Poincaré mapping, fractal dimension, bifurcation diagram, continuous 

spectrum and chaotic dynamical behaviours. Later, Roslan et al. (2010, 2013) 

studied the Zhou system by discussing the matter for solving Zhou system 

using Euler’s method and fourth-order Runge-Kutta method. 

 

A research was conducted on the dynamical system (1) in Tee and 

Salleh (2013b) where the Hopf bifurcation for the system (1) was shown by 

means of first Lyapunov coefficient. The results showed that the system 

undergoes a subcritical Hopf bifurcation at the equilibrium points 𝑃+ and 𝑃−. 

However, the research was based on a special case in order to simplify the 

calculations and it does not represent the whole generality of occurrence of 

Hopf bifurcation in the system (1). 

 

More research on Hopf bifurcation such as the Hopf bifurcation on 

Rossler chaotic system with delayed feedback, see Ding et al. (2010), Hopf 

bifurcation of a unified chaotic system for the generalised Lorenz canonical 

form (GLCF), see Li et al. (2007) and Hopf bifurcation on a nonlinear three-

dimensional dynamical system derived from the Lorenz system, see Zhou et 

al. (2008), Tigan (2004a, 2004b), Lü et al. (2002). 

 

In this research, we studied in depth on the Hopf bifurcation of the 

dynamical system by means of centre manifold theorem, see Carr (1981). We 

presented the dynamics on centre manifold of dynamical system (1). Then, 

we analysed the direction of the Hopf bifurcation of the system by using the 

first Lyapunov coefficient, see Kuznetsov (1998). 
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2. A Modified Lorenz System  

From Tee and Salleh (2013a), we have concluded the following results 

with the basic dynamical properties of the system (1). 

 

Lemma 1 

  

1. If 𝑎 >  0 , 𝑏 >  0  and 𝑐 <  0 , the dynamical system (1) has only one 

equilibrium point which is the origin, 𝑃0(0,0,0). 
 

2. If 𝑎 >  0 , 𝑏 >  0  and 𝑐 >  0 , the dynamical system (1) has three 

equilibrium points: 𝑃0(0,0,0), 𝑃+(𝑥0, 𝑦0, 𝑧0) and 𝑃−(−𝑥0, −𝑦0, 𝑧0) where 

𝑥0 = 𝑏√𝑐 , 𝑦0 = √𝑐 , 𝑧0 = 𝑐. 

 

Next, by linearising the dynamical system (1) at the equilibrium point 𝑃+ 

or 𝑃− yields the following characteristic equation  

 

𝑓(𝜆) = 𝜆3 + (𝑎 + 𝑏)𝜆2 + (𝑎𝑏 + 𝑏2𝑐)𝜆 + 2𝑎𝑏2𝑐 = 0.        (2) 

 

Furthermore, by using the Routh-Hurwitz Criterion 

(𝑎 + 𝑏) > 0;

2𝑎𝑏2𝑐 > 0;
(𝑎 + 𝑏)(𝑎𝑏 + 𝑏2𝑐) − 2𝑎𝑏2𝑐 > 0.

}                    (3) 

 

Lemma 2. The equilibrium points of 𝑃+(𝑥0, 𝑦0, 𝑧0) and 𝑃−(−𝑥0, −𝑦0, 𝑧0) are 

asymptotically stable if and only if (4) holds. 

 

Then all the coefficients of the equation (3) are all positive. Hence, this 

leads to 𝑓(𝜆) > 0  for all λ ≥  0. Consequently, there is instability in the 

system (1) if and only if there are two complex conjugate zeros of  𝑓. We let 

𝜆1 = 𝑖𝜔  and 𝜆2 = −𝑖𝜔  for some real ω, the sum of three zeros of the 

function 𝑓 can be obtained through 

 

𝜆1 + 𝜆2 + 𝜆3 = −(𝑎 + 𝑏)                               (4) 

 

and we obtained 𝜆3 = −(𝑎 + 𝑏), which is on the margin of stability when 

𝜆1,2 = ±𝑖𝜔. On this margin, we calculated the following equation 

 

0 = 𝑓(−(𝑎 + 𝑏)) = −𝑏[𝑎2 + 𝑎𝑏 − 𝑎𝑏𝑐 + 𝑏2𝑐],         (5) 

that is, 
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𝑎1,2 =
𝑏(𝑐 − 1) ± 𝑏√𝑐2 − 6𝑐 + 1

2
.                           (6) 

 

The stability of the steady state of the equilibrium point 𝑃+(𝑥0, 𝑦0, 𝑧0) is 

analyzed by linearising the system (1). Hence, it undergoes linear 

transformation and becomes as follows 

 

{

𝑋̇ = 𝑎(𝑏𝑌 − 𝑋);

𝑌̇ = −(𝑋 + 𝑏√𝑐)𝑍;

𝑍̇ = 𝑋𝑌 + 𝑋√𝑐 + 𝑏√𝑐𝑌 − 𝑏𝑍.

                          (7) 

 

Thus, we obtained the Jacobian matrix at the equilibrium point 𝑃+(𝑥0, 𝑦0, 𝑧0) 
as follows  

𝐽 = [

−𝑎 𝑎𝑏 0
0 0 −𝑏√𝑐

√𝑐 𝑏√𝑐 −𝑏

].                               (8) 

 

At the equilibrium point by equation (3), Hopf bifurcation will appear 

when 𝑃+(𝑥0, 𝑦0, 𝑧0) loses its stability when (𝑎 + 𝑏)(𝑎𝑏 + 𝑏2𝑐) − 2𝑎𝑏2𝑐 =
0, that is, 

𝑐𝑏2 + 𝑎(1 − 𝑐)𝑏 + 𝑎2 = 0,                            (9) 

which yields as follow, 

𝑐 =
𝑎(𝑎 + 𝑏)

𝑏(𝑎 − 𝑏)
= 𝑐0.                                  (10) 

 

Next, we assuming the equation (2) has only a pair of pure imaginary 

roots. By substituting 𝜆 = 𝜔𝑖 into equation (2), the following yields 

 

−𝜔3𝑖 − (𝑎 + 𝑏)𝜔2 + (𝑎𝑏 + 𝑏2𝑐)𝜔𝑖 + 2𝑎𝑏2𝑐 = 0.   (11) 

 

Then, equation (11) becomes 

{
−𝜔3 + (𝑎𝑏 + 𝑏2𝑐)𝜔 = 0;

−(𝑎 + 𝑏)𝜔2 + 2𝑎𝑏2𝑐 = 0.
                     (12) 

 

Later, equation (12) derived a bifurcation surface as follows 

 

{

𝑎2 + 𝑎𝑏 − 𝑎𝑏𝑐0 + 𝑏
2𝑐0 = 0;

𝜔 = √
2𝑎2𝑏

𝑎−𝑏
,
2𝑎2𝑏

𝑎−𝑏
> 0.

                          (13) 

 



Hopf Bifurcation of a Nonlinear System Derived from Lorenz System Using Centre Manifold Approach 

 

 Malaysian Journal of Mathematical Sciences 5 

 

Hence, we have obtained our three eigenvalues as follows 

 

{
 
 

 
 𝜆1 = 𝑖√

2𝑎2𝑏

𝑎−𝑏
;

𝜆2 = −𝑖√
2𝑎2𝑏

𝑎−𝑏
;

𝜆3 = −(𝑎 + 𝑏).

                               (14) 

 

Next, by finding the implicit derivative of 𝜆 with respects to 𝑐 in equation (2), 

we have 

𝜆′(𝑐) =
𝑏2𝜆 + 2𝑎𝑏2

3𝜆2 + 2(𝑎 + 𝑏)𝜆 + 𝑎𝑏 + 𝑏2𝑐
.                      (15) 

 

So, we investigated (15) to determine if Hopf bifurcation occurs by 

evaluating the following 

 

Re 𝜆′(𝑐0) =
2𝑏2(𝑎 − 𝑏)(−2𝜔2𝑎2 + 3𝜔2𝑎𝑏 + 2𝑎3𝑏 − 𝜔2𝑏2)

(−3𝜔2𝑎 + 3𝜔2𝑏 + 2𝑎2𝑏)2 + (2𝜔𝑎2 − 2𝜔𝑏2)2
≠ 0,  (16) 

 

 

Im 𝜆′(𝑐0) = −
𝑏2𝜔(𝑎 − 𝑏)(3𝜔2𝑎 + 4𝑎3 − 2𝑎2𝑏 − 4𝑎𝑏2 − 3𝜔2𝑏)

(−3𝜔2𝑎 + 3𝜔2𝑏 + 2𝑎2𝑏)2 + (2𝜔𝑎2 − 2𝜔𝑏2)2
≠ 0,   (17) 

 

and 

Im 𝜆(𝑐0) = 𝜔 = √
2𝑎2𝑏

𝑎 − 𝑏
≠ 0.                           (18) 

 

Theorem 1 [1]. When 𝑐 = 𝑐0 > 0 , and 𝑎 > 0, 𝑏 > 0 , 𝑎 ≠ 𝑏  there is an 

occurrence of Hopf bifurcation at the equilibrium points 

𝑃+ (𝑏√
𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
, √

𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
,
𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
)  and 𝑃− (−𝑏√

𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
, −√

𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
,
𝑎(𝑎+𝑏)

𝑏(𝑎−𝑏)
)  in 

the system (1). 

 

3. Centre Manifold Theorem 

In this section, the dynamics on centre manifold for the dynamical 

system (1) was found using the method called centre manifold theorem, see 

Carr (1981). For system (1), the eigenvectors corresponding to the 

eigenvalues 𝜆1, 𝜆2 and 𝜆3  are respectively 
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𝑉1 =

(

 
 

1
𝑎 + 𝜔𝑖

𝑎𝑏
2𝑎𝑏 − 𝑎𝜔𝑖 + 𝑏𝜔𝑖

𝑎𝑏(𝑎 + 𝑏) )

 
 
, 𝑉2 =

(

 
 

1
𝑎 − 𝜔𝑖

𝑎𝑏
2𝑎𝑏 + 𝑎𝜔𝑖 − 𝑏𝜔𝑖

𝑎𝑏(𝑎 + 𝑏) )

 
 
, 

𝑉3 = 

(

 
 
−

𝑎2

𝑎 − 𝑏
𝑎

𝑎 − 𝑏
1 )

 
 
. 

 

Let the eigenvectors be in the form of 𝑚 = 𝑣1 + 𝑣2𝑖 and 𝑛 = 𝑣3, where 

𝑣1, 𝑣2 and  𝑣3 are all real vectors, see Tigan (2004a, 2004b, 2008), Kuznetsov 

(1998), Craioveanu and Tigan (2008), Wiggins (2000). Hence, using 

formulae  𝑣1 =
𝑉1+𝑉2

2
  and 𝑣2 =

𝑉1−𝑉2

2𝑖
 the vectors were obtained as follows 

 

𝑣1 =

(

 
 

1
1

𝑏
2

𝑎 + 𝑏)

 
 
, 𝑣2 =

(

 
 

0
𝜔

𝑎𝑏

−
𝜔(𝑎 − 𝑏)

𝑎𝑏(𝑎 + 𝑏))

 
 
, 𝑣3 =  

(

 
 
−

𝑎2

𝑎 − 𝑏
𝑎

𝑎 − 𝑏
1 )

 
 
.        (19) 

 

Due to the complexity of the system, an example of substitution is used 

to present the dynamics of the centre manifold of the system. Let 𝑏 =
1

2
𝑎. 

Thus, a matrix, P was form as follows 

 

𝑃 =

[
 
 
 
 
1 0 −2𝑎

2

𝑎

2√2

𝑎
2

4

3𝑎
−
2√2

3𝑎
1 ]
 
 
 
 

. 

 

Then, a linear transformation of the system (1) was performed 

 

(
𝑋
𝑌
𝑍
) =

[
 
 
 
 
1 0 −2𝑎

2

𝑎

2√2

𝑎
2

4

3𝑎
−
2√2

3𝑎
1 ]
 
 
 
 

(
𝑀1
𝑀2
𝑀3

), 
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where 

(
𝑀1
𝑀2
𝑀3

) =

[
 
 
 
 
 
 
5

17

2

17
𝑎

6

17
𝑎

√2

34

11

68
√2𝑎 −

9

34
√2𝑎

−
6

17𝑎

1

17

3

17 ]
 
 
 
 
 
 

(
𝑋
𝑌
𝑍
), 

namely 

{
  
 

  
 𝑀1 =

5

17
𝑋 +

2

17
𝑎𝑌 +

6

17
𝑎𝑍;

𝑀2 =
√2

34
𝑋 +

11

68
√2𝑎𝑌 −

9

34
√2𝑎𝑍;

𝑀3 = −
6

17𝑎
𝑋 +

1

17
𝑌 +

3

17
𝑍.

 

 

After some tedious calculations, the transformed system was obtained 

 

𝑀̇1 = 𝐴(𝑀1,𝑀2,𝑀3) 

       =
1

17
(7𝑎√2𝑀2 + 16𝑎

2𝑀3 − 6𝑎𝑀1 +
32

3
𝑎√6𝑀1 +

40

3
𝑎√3𝑀2 

  −7𝑎2√6𝑀3  + 12𝑀1
2 + 12√2𝑀1𝑀2 − 12𝑎𝑀1𝑀3 − 24𝑎√2𝑀2𝑀3 

          −24𝑎2𝑀3
2), 

 

𝑀̇2 = 𝐵(𝑀1,𝑀2,𝑀3) 

       = −
√2

408
(24𝑎√2𝑀2 − 222𝑎

2𝑀3 − 6𝑎𝑀1 + 260𝑎√6𝑀1 + 172𝑎√3𝑀2 

           −75𝑎2√6𝑀3  + 216𝑀1
2 + 216√2𝑀1𝑀2 − 216𝑎𝑀1𝑀3 

           −432𝑎√2𝑀2𝑀3 − 432𝑎
2𝑀3

2), 
 

𝑀̇3 = 𝐶(𝑀1,𝑀2,𝑀3) 

       =
1

102𝑎
(−18𝑎𝑀1 − 30𝑎√2𝑀2 − 105𝑎

2𝑀3 + 32𝑎√6𝑀1  + 40𝑎√3𝑀2 

          −21𝑎2√6𝑀3 + 36𝑀16
2 + 36√2𝑀1𝑀2 − 36𝑎𝑀1𝑀3 − 72𝑎√2𝑀2𝑀3 

−72𝑎2𝑀3
2).                                                                                     (20) 

 

Then, the two-dimensional local centre manifold of the system (1) near the 

origin is the set 
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𝑊𝑙𝑜𝑐
𝑐 (0) = {(𝑀1, 𝑀2,𝑀3) ∈ ℝ

3|𝑀3 = ℎ(𝑀1,𝑀2), |𝑀1| + |𝑀2| ≪ 1}, 
 

where 

ℎ(0,0) =
𝜕ℎ

𝜕𝑀1
(0,0) =

𝜕ℎ

𝜕𝑀2
(0,0) = 0. 

 

With the substitution 𝑀3 = ℎ(𝑀1,𝑀2) in (3.2), the dynamic on the centre 

manifold is 

 

𝑀̇1 = 𝐴(𝑀1,𝑀2,𝑀3) 

       =
1

17
(7𝑎√2𝑀2 + 16𝑎

2ℎ − 6𝑎𝑀1 +
32

3
𝑎√6𝑀1 +

40

3
𝑎√3𝑀2 

  −7𝑎2√6ℎ + 12𝑀1
2 + 12√2𝑀1𝑀2 − 12𝑎𝑀1ℎ − 24𝑎√2𝑀2ℎ 

          −24𝑎2ℎ2), 
 

𝑀̇2 = 𝐵(𝑀1,𝑀2,𝑀3) 

       = −
√2

408
(24𝑎√2𝑀2 − 222𝑎

2ℎ − 6𝑎𝑀1 + 260𝑎√6𝑀1 + 172𝑎√3𝑀2 

           −75𝑎2√6ℎ + 216𝑀1
2 + 216√2𝑀1𝑀2 − 216𝑎𝑀1ℎ − 432𝑎√2𝑀2ℎ 

        −432𝑎2ℎ2).                                                                                         (21) 

                                                                                   

Assuming that the function 

 

𝑀3 = ℎ(𝑀1,𝑀2) = 𝑙11𝑀1
2 + 𝑙12𝑀1𝑀2 + 𝑙22𝑀2

2 +⋯.         (22) 
 

Substituting 𝑀1 = 𝑝 + 𝑞,𝑀2 = 𝑖(𝑝 − 𝑞), with 𝑝 = 𝑞̅, system (21) becomes 

the following 

𝑝̇ = 𝑃1 −
𝑖

408
𝑃2                                              (23) 

 

where 

 

𝑃1 =
15

17
𝑞2 −

3

17
𝑝2 −

7

34
√6𝑎2ℎ −

4

17
𝑎𝑝 −

2

17
𝑎𝑞 +

107

204
√6𝑎𝑞 +

12

17
𝑎𝑝ℎ 

         +
7

68
√6𝑎𝑝 −

24

17
𝑎𝑞ℎ +

8

17
𝑎2ℎ −

12

17
𝑎2ℎ2 +

12

17
𝑝𝑞, 

 

𝑃2 = −252√2𝑝
2 + 36√2𝑞2 − 180√2𝑎𝑞ℎ + 396√2𝑎𝑝ℎ + 111√2𝑎2ℎ  

          −216√2𝑝𝑞 + 87√2𝑎𝑞 − 81√2𝑎𝑝 − 420√3𝑎𝑝 − 100√3𝑎𝑞 

          +216√2𝑎2ℎ2 + 75√3𝑎2ℎ, 
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and 

𝑞̇ = 𝑄1 +
𝑖

408
𝑄2 ,                                                    (24) 

where 

 

𝑄1 =
15

17
𝑝2 −

3

17
𝑞2 −

7

34
√6𝑎2ℎ −

4

17
𝑎𝑞 −

2

17
𝑎𝑝 +

107

204
√6𝑎𝑝 +

12

17
𝑎𝑞ℎ 

          +
7

68
√6𝑎𝑞 −

24

17
𝑎𝑝ℎ +

8

17
𝑎2ℎ −

12

17
𝑎2ℎ2 +

12

17
𝑝𝑞, 

 

𝑄2 = −252√2𝑞
2 + 36√2𝑝2 − 180√2𝑎𝑝ℎ + 396√2𝑎𝑞ℎ + 111√2𝑎2ℎ 

           −216√2𝑝𝑞 + 87√2𝑎𝑝 − 81√2𝑎𝑞 − 420√3𝑎𝑞 − 100√3𝑎𝑝 

           +216√2𝑎2ℎ2 + 75√3𝑎2ℎ. 
 

From (22), in the new complex variables𝑀3 is in the form of 

 

𝑀3 = 𝐿11𝑝
2 + 𝐿12𝑝𝑞 + 𝐿22𝑞

2 +𝑂(|𝑝|3),                     (25) 
with 

𝑀̇3 = 2𝐿11𝑝̇𝑝 + 𝐿12(𝑝̇𝑞 + 𝑝𝑞̇) + 2𝐿22𝑞̇𝑞 + 𝑂(|𝑝|
3).           (26) 

 

 

From equation (26), we substitute 𝑝̇  and 𝑞̇  and obtained the following 

equation 

𝑀̇3 =∑ 𝑅𝑖
4

𝑖=1
−
𝑖𝑎

408
∑ 𝑆𝑖

4

𝑖=1
+ 𝑂(|𝑝|3),                   (27) 

where 

𝑅1 = −
8

17
𝑎𝑝2𝐿11 +

7

34
√6𝑎𝑝2𝐿11 +

107

102
√6𝑎𝑝𝑞𝐿11 −

4

17
𝑎𝑝𝑞𝐿11 

          −
7

17
√6𝑎2ℎ𝑝𝐿11 +

16

17
𝑎2ℎ𝑝𝐿11 

𝑅2 = −
2

17
𝑎𝑝2𝐿12 +

107

204
√6𝑎𝑝2𝐿12 −

8

17
𝑎𝑝𝑞𝐿12 +

7

34
√6𝑎𝑝𝑞𝐿12 

           −
2

17
𝑎𝑞2𝐿12 +

107

102
√6𝑎𝑞2𝐿12 

𝑅3 = +
8

17
𝑎2ℎ𝑝𝐿12 −

7

34
√6𝑎2𝑝ℎ𝐿12 +

8

17
𝑎2𝑞ℎ𝐿12 −

7

34
√6𝑎2𝑞ℎ𝐿12 

           +
16

17
𝑎2ℎ𝑞𝐿22 

𝑅4 = −
8

17
𝑎𝑞2ℎ𝐿22 +

7

34
√6𝑎𝑞2ℎ𝐿22 +

107

102
√6𝑎𝑝𝑞𝐿22 −

4

17
𝑎𝑝𝑞𝐿22 

           −
7

17
√6𝑎2𝑞ℎ𝐿22 
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𝑆1 = −840√3𝑝
2𝐿11 + 222√2𝑎ℎ𝑝𝐿11 + 150√3𝑎ℎ𝑝𝐿11 − 200√3𝑝𝑞𝐿11 

          +174√2𝑝𝑞𝐿11 

𝑆2 = 75√3𝑎ℎ𝑞𝐿12 − 87√2𝑝
2𝐿12 − 75√3𝑎ℎ𝑝𝐿12 + 100√3𝑝

2𝐿12 

          +87√2𝑞2𝐿12 + 111√3𝑎ℎ𝑞𝐿12 

𝑆3 = 840√3𝑞
2𝐿22 − 222√2𝑎ℎ𝑞𝐿22 − 150√3𝑎ℎ𝑞𝐿22 + 200√3𝑝𝑞𝐿22 

          −174√2𝑝𝑞𝐿22 

𝑆4 = −162√2𝑝
2𝐿11 − 100√3𝑞

2𝐿12 − 111√2𝑎ℎ𝑝𝐿12 + 162√2𝑞
2𝐿22. 

 

Next, we substituted the equation (25) into equation (20) to obtain the 

following 

𝑀̇3 −
1

102𝑎
𝑣 −

𝑖

51𝑎
𝑤 + 𝑂(|𝑝|3),               (28) 

where 

 

𝑣 = 18𝑎𝑞 + 18𝑎𝑝 + 105𝑎2𝑝2𝐿11 + 21√6𝑎
2𝑝𝑞𝐿12 + 105𝑎

2𝑞2𝐿22 

        +21√6𝑎2𝑝2𝐿11 + 21√6𝑎
2𝑞2𝐿22 + 105𝑎

2𝑝𝑞𝐿12 − 32√6𝑎𝑞 

        −32√6𝑎𝑝 − 72𝑝𝑞 − 36𝑞2 − 36𝑝2, 

𝑤 = 15√2𝑎𝑝 − 15√2𝑎𝑞 + 20√3𝑎𝑞 − 20√3𝑎𝑝 − 18√2𝑝2 + 18√2𝑞2. 
 

Then, equating the coefficients of the 𝑝2, 𝑝𝑞, and𝑞2  between the equation 

(28) and (27), one can find the values of L 

𝐿11 =
1

𝑎2
(0.1302693542 − 0.02020385526𝑖), 

 

𝐿12 =
1

𝑎2
(0.05600084040 + 1.460777204−11𝑖),                  (29) 

 

𝐿22 =
1

𝑎2
(0.1302693542 + 0.02020385526𝑖), 

 

where 

ℎ = 𝐿11𝑝
2 + 𝐿12𝑝𝑞 + 𝐿22𝑞

2 + 𝑂(|𝑝|3). 
 

Theorem 2. When 𝑏 =
1

2
𝑎, 𝑎 > 0, 𝑏 > 0, and 𝑐0 = 6, the dynamics on the 

centre manifold of system (1.1) is governed by the equation  

𝑝̇ = 𝑃1 −
𝑖

408
𝑃2                                       (30) 

 

at the equilibrium point, 𝑃+(𝑥0, 𝑦0, 𝑧0) and  𝑃−(−𝑥0, −𝑦0, 𝑧0) where 
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𝑃1 =
15

17
𝑞2 −

3

17
𝑝2 −

7

34
√6𝑎2ℎ −

4

17
𝑎𝑝 −

2

17
𝑎𝑞 +

107

204
√6𝑎𝑞 +

12

17
𝑎𝑝ℎ 

         +
7

68
√6𝑎𝑝 −

24

17
𝑎𝑞ℎ +

8

17
𝑎2ℎ −

12

17
𝑎2ℎ2 +

12

17
𝑝𝑞, 

 

𝑃2 = −252√2𝑝
2 + 36√2𝑞2 − 180√2𝑎𝑞ℎ + 396√2𝑎𝑝ℎ + 111√2𝑎2ℎ 

          −216√2𝑝𝑞 + 87√2𝑎𝑞 − 81√2𝑎𝑝 − 420√3𝑎𝑝 − 100√3𝑎𝑞 

          +216√2𝑎2ℎ2 + 75√3𝑎2ℎ, 
 

ℎ = 𝐿11𝑝
2 + 𝐿12𝑝𝑞 + 𝐿22𝑞

2, 
 

while the 𝑝 and 𝑞 are conjugate to each other with 𝐿11, 𝐿12  and 𝐿22 are of 

(30). 

 

From the Theorem 2, one can obtain the values for 𝑔20, 𝑔11, 𝑔02 and 𝑔21 

from the centre manifold of system (1). The values obtained are as follow 

 

𝑔20 = −0.1950692308 + 0.7825683701𝑖, 
𝑔11 = 0.7039940901 − 0.7093248125𝑖, 
𝑔02 = 0.8921666156 − 0.2170625130𝑖 

𝑔21 =
−0.1317741276 + 0.03293263179𝑖

𝑎
 

 

Next, the first Lyapunov coefficient, see Kuznetsov (1998) is described as 

follows 

𝑙1(0) =
𝑅𝑒 𝐶1(0)

𝛼 ′(0)
, 

𝐶1(0) =
𝑖

2𝜔
(𝑔20𝑔11 − 2|𝑔11|

2 −
1

3
|𝑔02|

2) +
𝑔21
2
, 

 

where 𝛼′(0) is equation (16). The value obtained is  

 

𝐶1(0) =
−0.2117476583 − 1.033922170𝑖

𝑎
, 

𝑙1(0) =
14.39884076

𝑎2
. 

 

Thus, it is clear that the value of 𝑙1(0) > 0 for all values of 𝑎 . One can 

conclude that the system has a subcritical Hopf bifurcation for all values of 𝑎. 

This result strengthens the previous result that has been done in Tee and 

Salleh (2013b).  
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